

AAO Based MCPs for Large Area Photo-Detectors

Seon W. Lee† and H. Hau Wang‡
High Energy Physics Division †, Materials Science
Division ‡
Argonne National Laboratory
Godparent Review October 4th, 2010

Contents

- What is anodized aluminum oxide (AAO)?
- Advantage of AAO based MCPs
- Roadmap for the Development of AAO based MCPs
- Recent progress
 - Improved procedure for better micro-machined pores
 - Controllable funnel-shaped entrance formation
 - Large open area (78%) demonstrated

What is AAO?

Nanoporous material consists of selforganized hexagonally closed packed nanoscale pores formed by anodizing alumin

http://terpconnect.umd.edu/~pban/
Cross.htnsection of AAO

http://www2.chem.umd.edu/Groups/slee/ new_site/research.html

Atomic Force Microscopy (AFM) image on top of AA

Advantage of AAO based MCPs

- 1. Al is inexpensive
- 2. Pore diameter can be varied in a wide range:
 - intrinsic pores (20 \sim 500 nm) through anodization
 - micro-machined pores (500 nm 40 μ m) through lithography and etching
 - 32.8 mm laser writer, 8"X8" Large scale photomask +

Advantage of AAO based MCP

3. Intrinsic pores help to create vertical channels through wet

Cross-section of Etched Pores

Si etching: not possible to etch deep trench with high aspect ratio

4. Funnel-shaped entrance can be fabricated Intrinsic pores have naturally funnelshaped entrance Funnel-shaped entrance is feasible through etching

Roadmap for the development of AAO based MCPs

Develop fabrication process to create micromachined pores

Optimize L/D for max. gain:
by varying AAO thickness (L) and micromachined pore
diameter (D)

Large open area ratio

Build funnel-shaped channel entrance ALD coating to enhance secondary electron emission

Testing and scale up to 8" X 8" tile

2um, 5um, 10um hcp (hexagonal closed packed) pores patterns

 Diameters of pores and pore-to-pore distance can be varied by drawing pattern

Optimize L/D to maximize gain

- a. Electron multiplication is determined by channel aspect ratio Length to Diameter (L/D).
- b. Maximize open area ratio

Thickness of AAO controlled through time and voltage

Lee et al. Nat Materials, vol 5, p741 (2006)

Aspect ratio

- Required AAO thickness (in μm) to meet the aspect ratio (L/D)
- White areas are straight forward

Aspect	Pore size	1 μ	2 μ	5 μ	10 μ	20 μ
40	20 um	40 um	80 um	200	400	800
60	30 um	60 um	120	300	600	1200
80	40 um	80 um	160	400	800	1600
100	50 um	100	200	500	1000	2000

Long anodization time in sulfuric acid leads to damage

Open area

Pore size hcp structure	Pore-to- pore distance	Calculated open ratio	Accomplishment
a	2 a	22.7 %	Accomplished
a	1.5 a	40 %	Accomplished for small area test sample
a	1.25 a	58 %	Accomplished for small area test sample
a	1.10 a	78.7 %	Demonstrated (7/2010)
a	a	90.7%	Possible only with

- Open area up to 80% is feasible.
- 90% open area is only possible if funnel shaped entrance can be prepared.

Status of testable AAO based MCP at Argonne

- 32.8 mm free standing AAO
- Pore size : 20 um
- Open area ratio : 22.66%
- L/D:10

Optical image: Front 10X Back 20X

SEM images - AAO with etched pores

Challenges in AAO etching

1. General difficulty

Optical imaging is not sufficient to determine the degree of etching

SEM imaging is required to follow the process

2. Uneven etching –

The Al surface should be as smooth and even as possible Avoid AAO surface contamination (hydrophilic vs. hydrophobic areas)

Stirring of the etching solution

- 3. Alumina nanowires hanging inside the patterned pores
 Mild sonication helps to remove these nanowires
- 4. Slight over-etching creates the desired funnel-shaped entrance
 Timing is very critical
 - Over-etching will destroy the membrane
- 5. Open area can be controlled through etching Timing is very critical

Effect of sonication - clean up pores

AAO after etching - back

Back side - after sonication

12 μ pores

AAO after etching – front side, showing

Back side - after sonication

Funnel-shaped entrances through etching

AAO membrane with 10 µm pores - slightly over-etched

AAO membrane with 15 µm pores – more over–etched

Open area ~78% is demonstrated

AAO membrane with 18 µm pores and 78% open area

5 μm pore photomask (15×15 mm²) is prepared

Summary and Future direction

- AAO based MCPs with 20- to 10-µm micro-machined pores have been developed.
- The following challenges have been overcome:
 - a) Loose alumina nanowires in the micro-machined pores
 - Removal through sonication
 - b) Controllable funnel-shaped pore entrance demonstrated
 - c) Open area up to 78% demonstrated
- 5 μm pore photomask is ready for photo-lithography
- Working with the ALD group for secondary electron emission coating, avoid sample bending, ..etc.
- Working with the characterization and laser testing groups on ALD/ AAO/MCPs
- Seale mpetors: 8" samples
 (a) Achieve straight pores in AAO with diameter 0.7 microns (no-funnel option), 40 <L/D < 100, and open-area ratio 60 %;
 - (b) Demonstrate the feasibility of making AAO funnels suitable for photo-cathode deposition;

19

- (c) Produce blanks of 32.8mm AAO plate for tests and MCP development.
- (d) Evaluate the process economics.

Detector applications suitable for AAO based MCPs?

Pro / AAO strength

- Small pores (30-350 nm intrinsic pores) are readily available that are not feasible with glass fibers
- Larger pores (500 nm 40 μm) can be fabricated
- Special requirement such as funnel-shaped entrance can be fabricated
- Small pores may provide faster timing and spatial resolution

Con

- Chemical etching requires extensive optimization
- Porous alumina is not as strong as glass
- Membrane thicker than 500 μm is hard to make

